Analytical Study on Urban Expansion Using the Spatial and Temporal Dynamics of Land Use Change in Faisalabad City, Pakistan

Nusrat Parveen1*, Abdul Ghaffar2, Muhammad Nasar-u-Minallah3, and Muhammad Ali4

1Department of Geography, GC University Faisalabad, Pakistan
2Department of Geography, Punjab University Lahore, Pakistan
3Department of Geography, Govt. Postgraduate College Gojra, Pakistan
4Department of Meteorology, COMSATS University Islamabad, Pakistan

*Email: nusrat.siddiq@gmail.com

Received: 27 July, 2019 Accepted: 25 September, 2019

Abstract: Urban expansion and unparalleled rural to urban conversion, along with an enormous population growth are influential forces changing land use in metropolitan areas. The current work determined temporal and spatial alteration in built-up area, agriculture land, barren land and water area by using Landsat imageries of Faisalabad city from 2003 to 2017. The supervised classification technique has been performed on all the images to produce the land use change maps using the maximum likelihood algorithm and accuracy assessment of the classification has been performed. It has been concluded maximum increase of built-up land were from 30% in 2003 to 50% in 2017 whereas the maximum decrease in agriculture land class has been observed from 36% of 2003 to 10% in 2017. Urban population of Faisalabad city has increased from 2 million in 1998 to population statistics reached up to 3.2 million in 2017. Faisalabad 3rd largest city of Pakistan facing lot of issues due to urban expansion, analyzing the reasons and penalties of land use changes facilitate local government and urban planners for the better management of future plans regarding the urban settlements and reduce the negative consequences.

Keywords: Urban expansion, land use, temporal change, GIS, Faisalabad city.

Introduction

Urbanization, human migration and population growth contributed to alter their environment moreover anthropogenic activities induce change in land use pattern (Osgouei and Kaya, 2017; Riaz et al., 2017; Drummond and Loveland, 2010). From 1950 the world urban population has been enormously increased from 246 million to almost 4 billion in 2014 moreover the world urbanization prospect suggested that in 2030 world urban population will get to 8.3 billion (Chen et al., 2006; Carlson and Arthur, 2000). The urban expansion has been accompanied with the loss of agricultural land and quantification of the land use change with series of satellite images to analyze and monitor the temporal changes in the rapidly growing metropolitan areas is indispensable (Fan and Ding, 2016; Minallah et al., 2016; Shao et al., 2016; Fonji and Taff, 2014). Urbanization has long been identified to affect air and surface temperature, thus changing the local climate (Nasar-u-Minallah, 2018). Therefore, understanding the spatiotemporal dynamic procedures are essential and valuable for urban managers to guard and manage urban environments (Chen et al., 2018).

Changes in land use modification can be categorized by the complicated interface of structural, social and technical factors that affect the local environment (Butt et al., 2015). Change detection analysis used to measure the distinctive data framework and thematic change is indispensable for assessment of natural and anthropogenic interactions through applying multi-temporal datasets to quantifications of historical modification consequently aid in determining the modification linked with land use properties (Seif and Mokarram, 2012; Ahmad, 2012). Urban growth measurements using spatial and attribute data along with the satellite images used to determine the procedure of urban land use alteration (Dadras et al., 2015; Bhalli et al., 2012) Classification methods are most prevalent methods to investigate the land use changes. Monitoring and measuring the land use change by using the temporal data sets of multi scale level by using the different sensors are guiding different dimensions in remotely sensed data on global scale (Giuliani et al., 2017; Lewis et al., 2016).

Latifovic et al., (2005) used Landsat imagery to investigate land use change because of mining growth in part of Canada, declared that the causes for the change in the land use make it possible to differentiate between natural and human-induced coexistence. The land use changes mapped during 1999-2017 (Sweden) using RS and GIS techniques (Tijssen, 2018). The current progress in remote sensing leading to the availability of high spectral, temporal and spatial resolution remote sensing imageries along with new techniques for analyses to gauge change in urban systems in timely and more efficiently (Xian et al., 2006). Therefore, it is significant for the urban land use planning, management and utilization (Abebe, 2013). The study aims to investigate urban land use change in Faisalabad city from 2003-2017. Moreover, the study also focused on the urban expansion along with the population increase.
Materials and Methods

Study Area

Faisalabad city comprises of alluvial soil and lies at 30°42' to 31°47' north and 72°40' to 73°40' east (Fig. 1). The city is located on the flat land with suitable open lands to fulfil the need of future. The city is geographically connected to other cities of the Punjab and Pakistan that leads to strategic significance of this urban place. The city lies on M3 highway, which connects it to Islamabad and Lahore through Motorway (M2) and possibly will connect to Multan-Karachi via M4. The Faisalabad district occupied an area of 5,856 sq. km. While the metropolitan area is 1295 sq. km. Moreover, the current study conducted on the city area of 213 km² (Ahmed, 2010). The city have mixed types of land use patterns with slight planning on the physical development, whereas the most of the economics and industrial centre are located on the trunk roads (Arshad et al., 2018).

The Satellite imageries were acquired of Landsat 5, 7 and 8 with TM and ETM+ and OLI/TIRS series respectively from https://earthexplorer.usgs.gov/ (Table 1). The acquired images were staked and clipped after the radiometric and atmospheric correction in ERDAS IMAGINE 2014.

<table>
<thead>
<tr>
<th>Satellite</th>
<th>Sensor</th>
<th>Spatial Resolution (m)</th>
<th>Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Landsat 7</td>
<td>ETM+</td>
<td>30</td>
<td>2003</td>
</tr>
<tr>
<td>Landsat 5</td>
<td>TM</td>
<td>30</td>
<td>2010</td>
</tr>
<tr>
<td>Landsat 8</td>
<td>OLI</td>
<td>30</td>
<td>2017</td>
</tr>
</tbody>
</table>

In few last decades, this city has observed a hasty urban and industrial expansion and has been changed to a metropolitan and industrial centre with population of 3.2 million (GoP, 2017). So, this study was aimed to evaluate the study area urban expansion along with built-up and population change.

Satellite-derived data of Landsat 5_TM, 7_ETM+ and Landsat 8_OLI/TIRS are among the mainly functional datasets, which provide data for analyzing the temporal land use modification and also for the reason of the accessibility of long-term image archives (Zaharaddeen, Baba and Zachariah, 2016; Li et al., 2015; Gazioglu et al., 2014; Coban, Koc and Eker, 2010).

In classification techniques of satellite imageries where every pixel is attributed into a separate land use class interpretation of satellite images with criteria of spectral and land analysis are used to recognize the land use classes. Then, a supervised image classification with maximum likelihood Algorithm applied for the imageries of three selected time spans 2003, 2010 and 2017 respectively. In addition, four land use classes were recognized and utilized in this study including built-up area, barren land, agricultural land and water bodies (Bhalli and Ghaffar, 2015; Prakasham, et al., 2018). The supervised classification technique (Rawat, Biswas and Kumar, 2013; Bhalli et al., 2012; Bagan and Yamagata, 2012; Bhatta, 2009) of satellite images through selecting the training samples has been performed and accuracy assessment conceded by using random sample points obtained from Google earth and then computed the overall, user and producer’s accuracy moreover, the Kappa coefficient was calculated as well (Akar et al., 2017; Shao et al., 2016). The post-classification methods considered to be wide spread process to gauge the change detection.

In the current study this process was applied to conclude changes in land use during three-time intervals (i.e. 2003–2010, 2010–2017, and 2003–2017). Pixel-by-pixel analysis of cross tabulation has been applied for the quantification of conversions from each land use class to other categories (Fig. 2).
Results and Discussion

Land use Change

Total four classes were formed for the land use change detection including water, agriculture, built-up area and bare land for the satellite images of the years (2003, 2010, 2017).

![Land use map of Faisalabad city from 2003 to 2017](image)

From the classification process, it was calculated that till 2003 maximum area occupied by agriculture class (Fig. 3a) showing outskirts of city with green Colour indicating rich agriculture area, while in figure 3b of the year 2010, it has been clearly exposed in the map that agriculture land decreased and built-up area increased as compared to the year 2003. A gradual decrease in bare land and a slight decrease in water area have been observed. Moreover, in year 2017 (Fig. 3c), it has been examined that built-up area indicated the continuous increase in comparison with the area of years 2003 and 2010. The results also demonstrated that in 2017 the agricultural area has been decreased.

![Land use change detection from 2003 to 2017](image)

It has also been observed during the change detection method that maximum agricultural area was in 2003 and maximum area of built-up land has been seen during 2017. So, it has been concluded that maximum increase of built-up land was from 30% to 50% of the area from 2003 to 2017, while maximum decrease in agriculture land area from 36% to 10% has been observed during 2003 to 2017 (Fig. 5).

![Urban expansion in study area up to 2003 till 2017](image)

Urban Expansion

The urbanization process spotlighted the land use changes, consequences after the human activities. With
the population increase and economic development in the world maximum number of people moved to urban areas contributed towards urban expansion.

According to the obtained results from supervised classification of year 2003 to 2017, built-up area maintains the continuous increase due to the increase in population and the economic growth of the area.

Estimation of land Conversion

During the first period of study i.e., 2003-2010, 216.54 hectare 79.9% of the agricultural land area has been converted into built-up area, while 51.12 hectares (18.9%) has been changed into built-up area.

![Figure 6 Map shows the time series analysis of land use conversion of Faisalabad city.](image)

Table 3. Estimated land use class conversion from 2003 to 2017.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Area (ha)</td>
<td>Area (%)</td>
<td>Area (ha)</td>
</tr>
<tr>
<td>Agricultural land to Built-up area</td>
<td>216.54</td>
<td>79.9</td>
<td>143.37</td>
</tr>
<tr>
<td>Water area to Built-up area</td>
<td>3.33</td>
<td>1.2</td>
<td>12.51</td>
</tr>
<tr>
<td>Bare Land to Built-up area</td>
<td>51.12</td>
<td>18.9</td>
<td>439.02</td>
</tr>
<tr>
<td>Total</td>
<td>270.99</td>
<td>100</td>
<td>594.9</td>
</tr>
</tbody>
</table>

Moreover, during the second period of study which is 2010-2017 maximum bare land area of 439.02 hectare, 73.8% has been converted into built-up and 143.37 hectare, 24.1% area of agriculture land has been changed in to built-up furthermore, during 2003-2017 there has been noticed that much of the agricultural land area 359.91 hectare, 41.6% has been converted into built-up whereas 490.14 hectare, 56.6% bare land area has been replaced by built-up land (Table 3 & Figure 6).

Accuracy Assessment

This research represents that supervised land use classification a better choice for multi-temporal land use change assessment. Kappa statistics is a measurement between users identified classification data and referenced data. Accuracy in classification is tested with Kappa value (0.81–1.00) indicate approximately perfect/perfect match among the classified and referenced data (van Vliet, Bregt, and Hagen-Zanker, 2011). Classification accuracy for the year 2003, 2010 and 2017 with the overall classification accuracy was 89.11%, 88.75% and 91.11% respectively while the overall Kappa statistics was 0.8300, 0.85 and 0.88 respectively for the three years’ supervised classification maps against the 103 random sample points.

Population Growth

Population growth has been considered among the major issues in Faisalabad city. As it was mentioned that the Faisalabad city is the 3rd largest city of Pakistan as well as is an economic hub especially in textile industry. People migrate from other cities to the Faisalabad and due to high migration rate; population of this area was increasing day by day.

<table>
<thead>
<tr>
<th>Years</th>
<th>Population in Millions</th>
<th>Annual Growth %</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003</td>
<td>2.26</td>
<td>2.57</td>
</tr>
<tr>
<td>2004</td>
<td>2.32</td>
<td>2.57</td>
</tr>
<tr>
<td>2005</td>
<td>2.38</td>
<td>2.6</td>
</tr>
<tr>
<td>2006</td>
<td>2.44</td>
<td>2.55</td>
</tr>
<tr>
<td>2007</td>
<td>2.5</td>
<td>2.58</td>
</tr>
<tr>
<td>2008</td>
<td>2.56</td>
<td>2.57</td>
</tr>
<tr>
<td>2009</td>
<td>2.63</td>
<td>2.55</td>
</tr>
<tr>
<td>2010</td>
<td>2.7</td>
<td>2.58</td>
</tr>
<tr>
<td>2011</td>
<td>2.77</td>
<td>2.56</td>
</tr>
<tr>
<td>2012</td>
<td>2.84</td>
<td>2.54</td>
</tr>
<tr>
<td>2013</td>
<td>2.91</td>
<td>2.61</td>
</tr>
<tr>
<td>2014</td>
<td>2.99</td>
<td>2.54</td>
</tr>
<tr>
<td>2015</td>
<td>3.06</td>
<td>2.56</td>
</tr>
<tr>
<td>2016</td>
<td>3.14</td>
<td>2.57</td>
</tr>
<tr>
<td>2017</td>
<td>3.22</td>
<td>2.57</td>
</tr>
</tbody>
</table>

Source: UN, 2019

The annual population increased by 2.6% in 2005 as compared to the year 2004. The population growth pattern remained similar with annual average of 2.5% except 2.61% in 2013 in comparison with previous year 2012 and 2.59% in 2017 respectively.
Estimated population of the city in 1998 was 2.1 million, which reached up to 2.3% in 2003 and the process continue to increase resulted in 2.7 million in 2010 and within seven years’ period the urban population reached up to 3.2 million (Table 4). Moreover, increase in population of annual growth rate of Faisalabad city has been given in Table 5. Population during 1981 census was 1.1 million which increased to 2.1 million in 1998 and reached 3.2 million in 2017 with double the numbers of people during each census time period. While during the 1981-1998 census the annual growth was 3.6% while during the other census period of 1998-2017 the growth rate percentage was 2.57%.

Conclusion

The current research concluded the extent of urban expansion and population change with annual growth rate change from 2003 to 2017, with the integration of RS & GIS techniques for land use change detection. Thus, incorporating demographic data beside temporal change pattern has given a significant reasoning for land use change and urban expansion evaluation. Consequently, it has been noted that maximum increase of built-up land was from 30% in 2003 to 50% in 2017 whereas the maximum decrease in agriculture land class has been observed from 36% in 2003 to 10% in 2017. Urban population in city has increased from 2 million in 1998 to 2.7 million in 2010, which reached 3.2 million in 2017. It has been concluded that during 2003-2017 total agricultural land area of 359.91 hectares, 41.6% has been converted into built-up whereas 490.14 hectares (56.6%) bare land area has been substituted by built-up land. Thus, Faisalabad city is facing many problems due to growing urbanization due to increase in migration rate due to economic growth. Moreover, the land use change analysis facilitates local government, urban planners for better management of future urban settlements and reduces the negative consequences.

References

